## Graphs III

## Obtaining linear graphs from non-linear functions



## Answers to additional problems

29.1 We first split the equation,

Equation of a straight line $\quad y=m x+c$

Linearized line

$$
\ln k=-\frac{E_{a}}{R} \times \frac{1}{T}+c
$$

so a plot of $\ln k$ (as $y$ ) against $1 / T$ (as $x$ ) should be linear with a gradient of $-E_{a} / R$ and an intercept on the $y$-axis of $c$.
29.2 To show these data follow the Arrhenius equation, we plot a graph of $\ln k$ (as $y$ ) against $1 / T$ (as $x$ ). The graph is indeed linear so the data fit the Arrhenius equation.


The intercept is 9.01. The gradient is $-2408 . E_{a}$ is $(-R \times-2408)$ so $E_{a}=20 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

- The graph will be curved rather than linear if we do not convert from ${ }^{\circ} \mathrm{C}$ to Kelvin.
29.3 We first split the equation,

Equation of a straight line

$$
\begin{aligned}
y & =m \times x+c \\
I_{t} & =n F A c \sqrt{\frac{D}{\pi}} \times \sqrt{\frac{1}{t}}
\end{aligned}
$$

A graph of $I_{t}$ as ( $y$ ) against $t^{1 / 2}$ (as $x$ ) will be linear and its gradient is $n F A c \sqrt{\frac{D}{\pi}}$. There is no constant term (so the intercept $c=0$ ).
A linearized graph should pass through the origin with no intercept.

- We must ensure the solution is not stirred so 'still' (or 'quiescent').
29.4 We draw a Cottrell plot of $I_{t}$ (as $y$ ) against $t^{1 / 2}(\operatorname{as} x)$. The graph is linear so the data fit the Cottrell equation. $I_{t}=4.59 \times 10^{-5} t^{1 / 2}$.

29.5 We first split the equation,

| Equation of a straight line | $y$ | $=m x$ |
| :--- | ---: | :--- |
| Linearized equation | $\ln [\mathrm{A}]_{t}$ | $=-k t+c$ |

Data that follow first-order kinetics will generate a linear graph when we plot $\ln [\mathrm{A}]_{t}$ (as $y$ ) against $t$ (as $x$ ). The gradient will be $-k$ and the intercept on the $y$-axis will be $c$.
29.6 We plot $\ln \left[\mathrm{H}_{2} \mathrm{O}_{2}\right]_{t}$ (as $y$ ) against $t$ (as $x$ ). The graph is linear, so the data do indeed follow a first-order rate law.
The intercept is 1.96 . The gradient is -0.0976 so $k=9.76 \times 10^{-2} \mathrm{~s}^{-1}$.

29.7 We first linearize the equation,

Equation of a straight line $\quad y=c+m \quad x$
Linearized equation

$$
E_{\mathrm{Cd}^{2+}, \mathrm{Cd}}=E_{\mathrm{Cd}^{2}, \mathrm{Cd}}^{\ominus}+\frac{R T}{2 F} \ln \left[\mathrm{Cd}^{2+}\right]
$$

A plot of $E_{\mathrm{Cd}^{2+}, \mathrm{Cd}}$ (as $y$ ) against $\ln \left[\mathrm{Cd}^{2+}\right]$ (as $x$ ) should be linear with a gradient of $R T / 2 F$ and an intercept on the $y$-axis of $E_{\mathrm{Cd}^{2}+, \mathrm{Cd}}^{\ominus}$.
29.8 To show these data follow the Nernst equation, we plot a graph of $E_{\mathrm{Cd}, \mathrm{Cd}}^{2+}$ (as $y$ ) against ln $\left[\mathrm{Cd}^{2+}\right]$ (as $\left.x\right)$. The graph is indeed linear, so the data fit the Nernst equation.

In ([ $\left.\mathrm{Cd}^{2+}\right] / \mathrm{mol} \mathrm{dm}^{-3}$ )


The intercept $=-0.400$ so $E_{\mathrm{Cd}^{2+}, \mathrm{Cd}}^{\ominus}=-0.400 \mathrm{~V}$ and the gradient is $R T / 2 F=0.0129 \mathrm{~V}$.

- The correct intercept occurs when the line crosses the ordinate at $x=0$ (see Chapter 28).

Equation of a straight line $\quad y=m \quad x+c$
Linearized equation $\quad \ln p=-\frac{\Delta H_{\text {vap }}^{\ominus}}{R} \times-\frac{1}{T}+c$
so a plot of $\ln p$ (as $y$ ) against $1 / T$ (as $x$ ) should be linear with a gradient of $-\Delta H_{\text {vap }}^{\ominus} / R$ and an intercept on the $y$-axis of $c$. The graph is indeed linear so the data fit the Clausius-Clapeyron equation.
The intercept $=31.5$ and the gradient $=-7454$ so $\Delta H_{\text {vap }}^{\ominus}=62.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

29.10 We first split the equation,

Equation of a straight line
Linearized equation

$$
\begin{array}{cl}
y & =m x+c \\
1 /[\mathrm{NO}]_{t}^{2} & =2 k t+c
\end{array}
$$

so a plot of $1 /[\mathrm{NO}]_{t}^{2}$ (as $y$ ) against $t$ (as $x$ ) should be linear with a gradient of $2 \times k$, and an intercept on the $y$-axis of $c$.

