Graphs III

Obtaining linear graphs from non-linear functions

Answers to additional problems

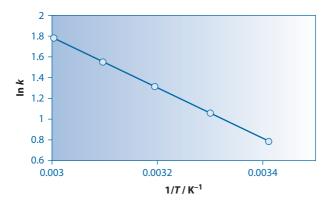
29.1 We first split the equation,

Equation of a straight line y = m x + cLinearized line $\ln k = -\frac{E_a}{R} \times \frac{1}{T} + c$

so a plot of ln k (as y) against 1/T (as x) should be linear with a gradient of $-E_a/R$ and an intercept on the y-axis of c.

۲

29.2 To show these data follow the Arrhenius equation, we plot a graph of $\ln k$ (as *y*) against 1/T (as *x*). The graph is indeed linear so the data fit the Arrhenius equation.



The intercept is 9.01. The gradient is -2408. E_a is (- $R \times -2408$) so $E_a = 20$ kJ mol⁻¹.

• The graph will be curved rather than linear if we do not convert from °C to Kelvin.

29.3 We first split the equation,

Equation of a straight line
$$y = m \times x + c$$

Linearized equation $I_t = nFAc \sqrt{\frac{D}{\pi}} \times \sqrt{\frac{1}{t}}$

A graph of I_t as (y) against t^{-v_2} (as x) will be linear and its gradient is $nFAc\sqrt{\frac{D}{\pi}}$. There is no constant term (so the intercept c = 0).

۲

A linearized graph should pass through the origin with no intercept.

• We must ensure the solution is not stirred so 'still' (or 'quiescent').

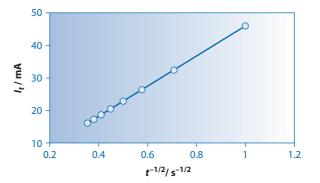
۲

()

2 29: Graphs III

29.4

We draw a Cottrell plot of I_t (as y) against $t^{-1/2}$ (as x). The graph is linear so the data fit the Cottrell equation. $I_t = 4.59 \times 10^{-5} t^{-1/2}$.



We first split the equation, 29.5

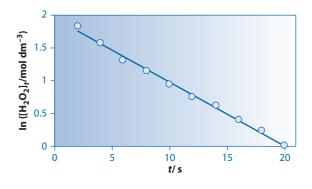
Equation of a straight line	y = mx +	С
Linearized equation	$\ln \left[A \right]_t = -k t +$	С

۲

Data that follow first-order kinetics will generate a linear graph when we plot $\ln [A]_{t}$ (as y) against *t* (as *x*). The gradient will be –*k* and the intercept on the *y*-axis will be *c*.

We plot $\ln [H_2O_2]_t$ (as y) against t (as x). The graph is linear, so the data do indeed follow a 29.6 first-order rate law.

The intercept is 1.96. The gradient is -0.0976 so $k = 9.76 \times 10^{-2} \text{ s}^{-1}$.



We first linearize the equation, 29.7

> y = cEquation of a straight line + mLinearized equation

 $E_{\rm Cd^{2+}, Cd} = E_{\rm Cd^{2+}, Cd}^{\odot} + \frac{RT}{2F} \ln[\rm Cd^{2+}]$

х

A plot of $E_{Cd^{2+},Cd}$ (as y) against ln [Cd²⁺] (as x) should be linear with a gradient of RT/2F and an intercept on the y-axis of $E_{Cd^{2+},Cd}^{-\Theta}$.

()

۲

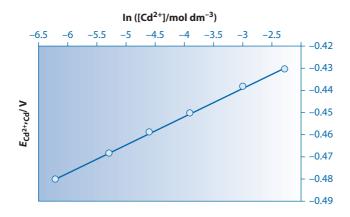
۲

3

()

To show these data follow the Nernst equation, we plot a graph of $E_{Cd,Cd}^{2+}$ (as y) against ln 29.8 $[Cd^{2+}]$ (as *x*). The graph is indeed linear, so the data fit the Nernst equation.

۲



The intercept = -0.400 so $E_{Cd^{2+},Cd}^{\oplus} = -0.400$ V and the gradient is RT/2F = 0.0129 V.

٠ The correct intercept occurs when the line crosses the ordinate at x = 0 (see Chapter 28). т

x + c

29.9

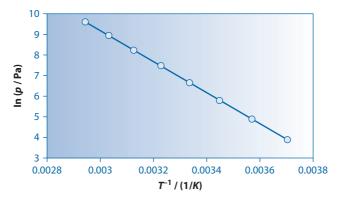
()

Equation of a straight line

y = $\ln p = -\frac{\Delta H_{\text{vap}}^{\odot}}{R} \times -\frac{1}{T} + c$ Linearized equation

so a plot of $\ln p$ (as y) against 1/T (as x) should be linear with a gradient of $-\Delta H_{vap}^{\ominus}/R$ and an intercept on the y-axis of c. The graph is indeed linear so the data fit the Clausius-Clapeyron equation.

The intercept = 31.5 and the gradient = $-7454 \text{ so } \Delta H_{\text{vap}}^{\odot} = 62.0 \text{ kJ mol}^{-1}$.



29.10 We first split the equation,

Equation of a straight line	У	=	m x	+	с	
Linearized equation	$1/[NO]_{t}^{2}$	=	2k t	+	с	

so a plot of $1/[NO]_t^2$ (as y) against t (as x) should be linear with a gradient of $2 \times k$, and an intercept on the y-axis of c.

۲