Probability I

Quantifying a likelihood

Answers to additional problems

30.1 From eqn. (30.1), the probability of choosing a defective voltmeter is $1 / 7$, or 14 per cent. Next, using the equation for a sequence of related events in eqn. (30.3), we say the overall probability $P=\left(P_{\text {First choice }}\right) \times\left(P_{\text {Second choice }}\right) \times\left(P_{\text {Third choice }}\right)=(1 / 7)^{3}$.

The probability of choosing a defective voltmeter three times in a row is $1 / 343$ or 0.0029 $=0.29$ per cent.
30.2 One in every eleven molecules of alcohol is i-decanol. The chance of reacting with that molecule is therefore $1 / 11$, or 9.1 percent.

Using eqn. (30.4), $P=(1 / 6)^{4}=1 / 1296=0.077 \%$.

- The probability P of obtaining a bottle of technical grade KClO_{4} is $1 / 6$.
- The probability P of obtaining a bottle of ACS grade KClO_{4} is $3 / 6$.
- The probability P of obtaining a bottle of Analar ${ }^{\oplus}$ grade KClO_{4} is $2 / 6$.
so the overall probability $P=\frac{1}{6} \times \frac{3}{6} \times \frac{2}{6}=\frac{6}{216}=\frac{1}{36}$ or about 2.8 per cent.
30.5 1. The first electron can enter whichever orbital it likes- p_{x}, p_{y}, or p_{z}-because all are equivalent and all are empty. Whatever we do, adding one electron will fill an empty orbital. The probability of the electron filling an empty orbital is $1 / 3$.

2. The second electron will enter one of two empty orbitals (the p_{x} is already partially full). So there are 2 vacancies for which the probability of filling is $1 / 2$.
3. The third electron has no choice because there is only one empty orbital (call it p_{z}). The probability $=1$.
4. The fourth electron can enter whichever half-filled orbital it likes-again, p_{x}, p_{y}, or p_{z}-because all are equivalent and are half-full. Whatever we do, we fill a half-full orbital, so again the probability of the electron filling an empty orbital is $1 / 3$.
So the overall probability is $\frac{1}{3} \times \frac{1}{2} \times \frac{1}{1} \times \frac{1}{3}=\frac{1}{18}$ or about 5.6%.
