30

Probability I *Quantifying a likelihood*

Answers to additional problems

30.1 From eqn. (30.1), the probability of choosing a defective voltmeter is 1/7, or 14 per cent. Next, using the equation for a sequence of related events in eqn. (30.3), we say the overall probability $P = (P_{\text{First choice}}) \times (P_{\text{second choice}}) \times (P_{\text{Third choice}}) = (1/7)^3$. The probability of choosing a defective voltmeter three times in a row is 1/343 or 0.0029

The probability of choosing a defective voltmeter three times in a row is 1/343 or 0.0029 = 0.29 per cent.

۲

30.2 One in every eleven molecules of alcohol is *i*-decanol. The chance of reacting with that molecule is therefore 1/11, or 9.1 percent.

30.3

()

Using eqn. (30.4), $P = (\frac{1}{6})^4 = \frac{1}{1296} = 0.077\%$.

- **30.4** The probability *P* of obtaining a bottle of technical grade $KClO_4$ is $\frac{1}{6}$.
 - The probability P of obtaining a bottle of ACS grade $KClO_4$ is 3/4.
 - The probability *P* of obtaining a bottle of Analar[®] grade KClO₄ is $\frac{2}{6}$.

so the overall probability $P = \frac{1}{6} \times \frac{3}{6} \times \frac{2}{6} = \frac{6}{216} = \frac{1}{36}$ or about 2.8 per cent.

- **30.5 1.** The first electron can enter whichever orbital it likes— p_x , p_y , or p_z —because all are equivalent and all are empty. Whatever we do, adding one electron will fill an empty orbital. The probability of the electron filling an empty orbital is $\frac{1}{3}$.
 - The second electron will enter one of two empty orbitals (the *p_x* is already partially full). So there are 2 vacancies for which the probability of filling is ½.
 - 3. The third electron has no choice because there is only one empty orbital (call it p_z). The probability = 1.
 - 4. The fourth electron can enter whichever half-filled orbital it likes—again, p_x, p_y, or p_z—because all are equivalent and are half-full. Whatever we do, we fill a half-full orbital, so again the probability of the electron filling an empty orbital is ¹/₂.

So the overall probability is $\frac{1}{3} \times \frac{1}{2} \times \frac{1}{1} \times \frac{1}{3} = \frac{1}{18}$ or about 5.6%.

()

۲