Probability II

Partition functions and wavefunctions

Answers to additional problems

31.1 Using eqn. (31.1), $W = \frac{N!}{N_0! N_1! N_2! \dots} = \frac{35!}{15! 0! 8! 5! 0! 3! 2! 0! 2!} = 6.80 \times 10^{19}$ Rearranging the Boltzmann distribution given in eqn. (31.2), $\frac{N_i}{N} = \frac{\exp\left(-\frac{\varepsilon_i}{k_{\rm B}T}\right)}{\sum_i \exp\left(-\frac{\varepsilon_i}{k_{\rm B}T}\right)}$ we see that $N_i = \frac{N}{q} \exp\left(-\frac{\varepsilon_i}{k_{\rm B}T}\right)$

For degenerate energy states, we need to include the degeneracy g_i in the calculation of N_i ,

۲

as we did for eqn. (31.5),
$$N_i = g_i \frac{N}{q} \exp\left(-\frac{\varepsilon_i}{k_{\rm B}T}\right)$$

Therefore the ratio
$$\frac{N_2}{N_1} = \frac{g_2\left(\frac{N}{q}\right)\exp\left(-\frac{\varepsilon_2}{k_{\rm B}T}\right)}{g_1\left(\frac{N}{q}\right)\exp\left(-\frac{\varepsilon_1}{k_{\rm B}T}\right)} = \frac{g_2}{g_1}\exp\left(-\frac{(\varepsilon_2 - \varepsilon_1)}{k_{\rm B}T}\right)$$

We can write this as $\frac{N_2}{N_1} = \frac{p_2}{p_1} = \frac{g_2}{g_1} \exp\left(-\frac{\Delta E}{k_{\rm B}T}\right)$ where $\Delta E = \varepsilon_2 - \varepsilon_1$.

31.3 The most accessible, highest-energy electron to be removed during ionization is that in a non-degenerate 3s orbital. We assume both states have a degeneracy of 1. Using the equation derived in Additional Problem 31.2,

$$\frac{N_2}{N_1} = \exp\left(-\frac{\Delta E}{RT}\right) = \exp\left(-\frac{495.85 \times 10^3}{8.314 \times (7500 + 273)}\right) = 4.65 \times 10^{-4}$$

We have used RT here instead of $k_{\rm B}T$ since the energy is given in molar units (J mol⁻¹).

31.4 As for the similar halogen molecule in the Worked Example 31.8, we assume that the degeneracy of the ground state for a chlorine molecule is 1 and for a chlorine atom is 4. The energy difference between the states $\Delta E = 242 \text{ kJ mol}^{-1}$. Using the equation from Additional Problem 31.2

$$\frac{N_2}{N_1} = \frac{g_2}{g_1} \exp\left(-\frac{\Delta E}{RT}\right) = \frac{4}{1} \exp\left(-\frac{242 \times 10^3}{8.314 \times (1800 + 273)}\right) = 3.19 \times 10^{-6}$$

Note how the magnitude of this proportion is of parts per million even at this very high temperature.

31.5 The relative populations of the two states can be given as $N_1 = n$ for the lower state and $N_2 = n/4$ for the upper state. Both levels are non-degenerates so $g_1 = g_2 = 1$. The energy

۲

()

۲

31: Probability II

2

()

difference between the states is 500 cm⁻¹. This value can be converted to Joules by multiplying by *hc*. In units of cm⁻¹ the value of *c* is 2.998×10^{10} cm s⁻¹.

Starting from the expression derived in Additional Problem 31.2,

 (\bullet)

$$\frac{N_2}{N_1} = \exp\left(-\frac{\Delta E}{k_{\rm B}T}\right) = \exp\left(-\frac{hc\tilde{\nu}}{k_{\rm B}T}\right)$$

we can rearrange to make T the subject,

$$\ln\!\left(\frac{N_2}{N_1}\right) = -\frac{hc\tilde{\nu}}{k_{\rm B}T}$$

and then $T = -\frac{hc\tilde{v}}{k_{\rm B}\ln\left(\frac{N_2}{N_1}\right)}$

Substituting into this equation

$$T = -\frac{hc\tilde{\nu}}{k_{\rm B}\ln\left(\frac{N_2}{N_1}\right)} = \frac{-6.626 \times 10^{-34} \times 2.998 \times 10^{10} \times 500}{1.38065 \times 10^{-23} \times \ln\left(\frac{n/4}{n}\right)} = \frac{-9.93 \times 10^{-21}}{1.38065 \times 10^{-23} \times \ln\left(\frac{1}{4}\right)} = 519 \text{ K}$$

The temperature is 519 K.

31.6

The relative populations of the two states can be given as $N_2 = 0.3$ for the excited state and $N_1 = (1-0.3) = 0.7$ for the ground state. The degeneracy of the ground state $g_1 = 1$ but the excited state is triply degenerate and so $g_2 = 3$. The energy difference between the states is 200 cm⁻¹ which can be converted to Joules by multiplying by *hc*, where $c = 2.998 \times 10^{10}$ cm s⁻¹.

Starting from the expression derived in Additional Problem 31.2,

$$\frac{N_2}{N_1} = \frac{g_2}{g_1} \exp\left(-\frac{\Delta E}{k_{\rm B}T}\right) = \frac{g_2}{g_1} \exp\left(-\frac{hc\tilde{\nu}}{k_{\rm B}T}\right)$$

we can rearrange to make T the subject,

$$\ln\!\left(\frac{N_2g_1}{N_1g_2}\right) = -\frac{hc\tilde{\nu}}{k_{\rm B}T}$$

and then
$$T = -\frac{hc\tilde{v}}{k_{\rm B}\ln\left(\frac{N_2g_1}{N_1g_2}\right)}$$

Substituting into this equation,

$$T = -\frac{hc\tilde{v}}{k_{\rm B}\ln\left(\frac{N_2g_1}{N_1g_2}\right)} = \frac{-6.626 \times 10^{-34} \times 2.998 \times 10^{10} \times 200}{1.38065 \times 10^{-23} \times \ln\left(\frac{0.3 \times 1}{0.7 \times 3}\right)} = 147.9 \,\rm K$$

The temperature will be 148 K.

31.7

At 0 K, water is arranged in a diamond-like tetrahedral structure, with the oxygen in the central position with short σ bonds to two hydrogens and longer hydrogen bonds to another 2 hydrogen atoms. For every *N* molecules of H₂O, there are 2*N* atoms of hydrogen, which can be arranged in one of 2 positions (attached to the oxygen by a short or long bond). Four hydrogens can be arranged around an oxygen atom in 2⁴ (= 16 ways). Only 6 out of 16 of these arrangements have 2 short and 2 long bonds, and are thus permissible arrangements at 0 K. Therefore only a fraction (6/16)^{*N*} of the 2^{2*N*} orientations of the hydrogens are possible.

$$W = 2^{2N} (6/16)^N = 2^{2N} (3/8)^N = ((2^2 \times 3)/8)^N = (3/2)^N$$

31-Monk-Chap31.indd 2

07-07-2021 23:06:32

 (\mathbf{r})

۲

To calculate the molar residual entropy $N = N_A$ and substituting into eqn. (31.14),

$$S = k_{\rm B} \ln(3/2)^{N_{\rm A}}$$

 (\bullet)

Using the third laws of logarithms, we can rearrange as $N_{A}k_{B}\ln(3/2)$

$$S = R \ln(3/2) = 3.4 \,\mathrm{J \, K^{-1} \, mol^{-1}}$$

This value is in good agreement with the experimentally measured value.

31.8 In order to calculate the equilibrium constant for the dissociation of Cl_2 , we need to use eqn. (31.3)

$$K = \frac{\left(q_{\text{CL,m}}^{\oplus} / N_{\text{A}}\right)^{2}}{\left(q_{\text{CL,m}}^{\oplus} / N_{\text{A}}\right)} \exp\left(\frac{-\Delta E_{0}}{RT}\right) = \frac{\left(q_{\text{CL,m}}^{\oplus}\right)^{2}}{q_{\text{CL,m}}^{\oplus} N_{\text{A}}} \exp\left(\frac{-\Delta E_{0}}{RT}\right)$$

The energy difference between the ground states is equal to the bond dissociation energy

 $\Delta E_{0} = 2U_{m}^{\oplus}(Cl) - U_{m}^{\oplus}(Cl_{2}) = D_{0}(Cl - Cl) = 242 \times 10^{3} J \text{ mol}^{-1}$

We also need to calculate the molar partition functions for Cl and Cl₂.

Molar partition function of Cl

For an individual atom of chlorine, there are only two contributions to the molar partition function: the translational and electronic partition functions.

The mass of a single chlorine atom is $35.5 \times 1.66054 \times 10^{-27} = 5.89 \times 10^{-26}$ kg and the molar volume can be calculated using the ideal-gas law $V_{\rm m} = RT/p^{\Theta} = 8.314 \times 2500/10^5 = 0.208 \,\mathrm{m}^3$. We can calculate Lambda = 5.86×10^{-12} and the translation partition function using eqn. (31.6),

$$q_{\rm Cl,m}^{\rm T} = \frac{0.208}{\left(5.86 \times 10^{-12}\right)^3} = 1.03 \times 10^{33}$$

The electronic partition function $q^{E} = g^{E}$ = degeneracy of the ground state = 4. We calculate the overall molar partition function for a chlorine atom as,

 $q_{\rm Cl,m}^{\rm o} = q_{\rm Cl,m}^{\rm T} q_{\rm Cl}^{\rm E} = 1.03 \times 10^{33} \times 4 = 4.13 \times 10^{33}$

Molar partition function of Cl,

In effect, we want the product of the translational, vibrational, rotational, and electronic partition functions for Cl_a.

Translational partition function of Cl,

The mass of $\text{Cl}_2 = 2 \times 35.5 \times 1.66054 \times 10^{-27} = 1.18 \times 10^{-25} \text{kg}$, T = 2500 K, and $V_{\text{m}} = 0.208 \text{ m}^3$.

Using eqn. (31.6), we say

$$\Lambda = \frac{6.626 \times 10^{-34}}{\left(2\pi \times 1.18 \times 10^{-25} \times 1.38065 \times 10^{-23} \times 2500\right)^{1/2}} = 4.14 \times 10^{-12} \,\mathrm{m}$$
$$q^{\mathrm{T}} = \frac{0.208}{\left(4.14 \times 10^{-12}\right)^3} = 2.92 \times 10^{33}$$

Vibrational partition function of Cl₂

The speed of light $c = 2.998 \times 10^{10}$ cm s⁻¹, T = 2500 K, and $\tilde{v} = 559.7$ cm⁻¹. Substituting into eqn. (31.7), we say

 $(\mathbf{0})$

()

()

L I

31: Probability II

$$q^{\rm V} = \frac{1}{1 - \exp\left(-6.626 \times 10^{-34} \times 2.998 \times 10^{10} \times 559.7 / (1.38065 \times 10^{-23} \times 2500)\right)} = 3.63$$

Rotational partition function of Cl₂

B = 0.2439 cm⁻¹ and the symmetry number $\sigma = 2$, for this homonuclear diatomic molecule. Using eqn. (31.9) for high temperatures

$$q^{\rm R} = \frac{1.38065 \times 10^{-23} \times 2500}{2 \times 6.626 \times 10^{-34} \times 2.998 \times 10^{10} \times 0.2439} = 3562.0$$

Electronic partition function of Cl,

The ground state of $Cl_2(g)$ is nondegenerate and there is a large energy gap to the 1st excited state. Therefore $g^E = 1$ and $q^E = 1$.

The overall molecular partition function is,

$$q = q^{\mathrm{T}} q^{\mathrm{V}} q^{\mathrm{R}} q^{\mathrm{E}} = 2.92 \times 10^{33} \times 3.63 \times 3562 \times 1 = 3.77 \times 10^{37}.$$

Equilibrium constant

We can calculate the equilibrium constant using eqn. (31.13), as

$$K = \frac{\left(q_{\rm Cl,m}^{\oplus}\right)^2}{q_{\rm Cl,m}^{\oplus}N_{\rm A}} \exp\left(\frac{-\Delta E_0}{RT}\right) = \frac{\left(4.13 \times 10^{33}\right)^2}{3.77 \times 10^{37} \times 6.023 \times 10^{23}} \exp\left(\frac{-242 \times 10^3}{8.314 \times 2500}\right) = 6.58$$

The equilibrium constant *K* is calculated to be > 1, which tells us the dissociated monomer form will predominate at 2500 K.

31.9

The tunnelling probability *P* is the ratio of the probability that the particle is in region 3 (after the barrier) to the probability it is in region 1 (before the barrier). Increasing *P* will lead to a higher probability that the particle tunnels through the barrier.

The expression says that larger particles of mass m are associated with more negative terms inside the bracket. The tunnelling probability is therefore smaller. Similarly, the tunnelling probability decreases with increased barrier height V_0 and width L.

Tunnelling is most likely when the energetic barrier height is relatively low and light particles move a short distance.

In scanning tunnelling microscopy, the tunnelling current is proportional to the tunnelling probability. The proportionality does not follow a linear relationship, though, because the tunnelling current increases by approximately a factor of ten for every 0.1 nm increment that the tip is brought closer to the surface.

31.10 We call the time required for half of the nuclei to decay the half-life, $t_{1/2}$. We can rearrange the equation for nuclear decay to make *t* the subject,

$$t = -\frac{1}{\lambda} \ln \left(\frac{n_t}{n_0} \right)$$

At
$$t_{1/2}$$
, $n_t = \frac{1}{2} n_0$, so $t_{1/2} = -\frac{1}{\lambda} \ln\left(\frac{\frac{1}{2}n_0}{n_0}\right) = -\frac{1}{\lambda} \ln\left(2^{-1}\right) = \frac{\ln(2)}{\lambda}$.

The probability of a radioactive atom decaying within its half-life is 50%.

()

 (\mathbf{r})