## Statistics I

## Averages and simple data analysis



## Answers to additional problems

32.1 The first point of $17.0 \mathrm{~cm}^{3}$ looks suspiciously small. We insert data into eqn. (32.7),

$$
Q_{(\text {exp })}=\frac{\left|(17.0-18.3) \mathrm{cm}^{3}\right|}{(20.0-17.0) \mathrm{cm}^{3}}=+\frac{1.3}{3.0}=0.433
$$

The result is positive because we take the modulus on the top line. There are nine measurements. The value of $Q$ is too small to allow us to reject this datum with greater than $90 \%$ confidence. We therefore include this point in subsequent calculations.
32.2 Using eqn. (32.3), the standard deviation is $0.861 \mathrm{~cm}^{3}$.
32.3 Using eqn. (32.1), the mean is $18.8 \mathrm{~cm}^{3}$
32.4 There are 9 (reliable) data points within the set so the median titre is the same as the fifth reading, $18.9 \mathrm{~cm}^{3}$
32.5 The mode titre is $19.3 \mathrm{~cm}^{3}$ because we obtained this value three times.
32.6 The value that appears suspicious is the last one, $-232.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$. It differs greatly from the others. Inserting values for the last point into eqn. (32.7),

$$
Q_{(\text {exp })}=\frac{\left|(232.7-230.9) \mathrm{kJ} \mathrm{~mol}^{-1}\right|}{(232.7-230.0) \mathrm{kJ} \mathrm{~mol}^{-1}}=+\frac{1.8}{2.7}=0.667
$$

There are 10 data. We can ignore this point with $>99 \%$ certainty. We will not include it in the statistical analysis below.
32.7 Using eqn. (32.1), the mean is $-230.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for the nine reliable data.
32.8 Using eqn. (32.3), standard deviation $s=0.30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for the nine reliable data.
32.9 The median energy is the same as the fifth reading because there are 9 (reliable) data points within the set. The median is $-230.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
32.10 We obtain this result three times which is more frequent than others. The mode energy is $-230.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

