Statistics II

Treatment and assessment of errors

Answers to additional problems

33.1 We first convert from V to mV . We then write, signal-to-noise ratio $=\frac{340}{10}=\frac{34}{1}$.
which is acceptable. We might cite this ratio as $34: 1$.
33.2 The innate error will be half the minimum increment measurable on the watch dial. In this case, the innate error is 0.5 s since the minimum increment is 1 s .
33.3 From eqn. (33.2), the signal-to-noise ratio is $\frac{3.2}{0.7}=4.6: 1$ which is acceptable.
33.4 To linearize the data, we plot $1 /[\mathrm{A}]_{t}(\operatorname{as} x)$ against time t (as y). The graph has the following appearance,

The graph clearly shows some scatter. The value of $r^{2}=0.969$.
33.5 From eqn. (33.3), the minimum error $=\left(\frac{0.001}{0.670}\right)=1.49 \times 10^{-3}$, or 0.15%.
33.6
33.6 Inserting values into eqn. (33.4),

$$
\begin{aligned}
(\text { minimum error })^{2}= & \left(\frac{0.005}{10}\right)^{2}+\left(\frac{0.001}{0.104}\right)^{2}+\left(\frac{15}{600}\right)^{2} \\
& \text { Pipette Concentration Time }
\end{aligned}
$$

The reading for time is 600 s because the chemist removes a sample every 10 minutes so $10 \times 60 \mathrm{~s}$
Performing the calculations yields,

$$
\begin{aligned}
& (\text { minimum error })^{2}=\left(5 \times 10^{-4}\right)^{2}+\left(9.62 \times 10^{-3}\right)^{2}+(0.025)^{2} \\
& (\text { minimum error })^{2}=2.5 \times 10^{-7}+9.25 \times 10^{-5}+6.25 \times 10^{-4}
\end{aligned}
$$

$$
\begin{aligned}
\left(\text { minimum error }^{2}\right. & =7.18 \times 10^{-4} \\
\text { so } \text { minimum error } & =\sqrt{7.18 \times 10^{-4}}=0.0268
\end{aligned}
$$

The error is 2.7%. Most of this error comes from the measurement of time.
33.7 It is best to start by computing the data necessary for the isochore plot.

T / K	686	702	733	779	826
$1 / T \div 10^{-3} \mathrm{~K}^{-1}$	1.458	1.425	1.364	1.284	1.211
$K_{\max }$	1.77	1.67	1.55	1.41	1.22
$\ln K_{\max }$	0.571	0.513	0.438	0.344	0.199
$K_{\min }$	1.67	1.59	1.43	1.31	1.18
$\ln K_{\min }$	0.513	0.464	0.358	0.270	0.166

A graph is then drawn of $\ln K$ (as y), against $1 / T$ (as x) for both sets of data.

The maximum gradient (line -—) is $1626 \mathrm{~K}^{-1}$
The minimum gradient (line ----) is $1259 \mathrm{~K}^{-1}$
33.8 Inserting values into eqn. (33.4),

$$
\begin{aligned}
(\text { minimum error })^{2} & =\left(\frac{1}{28.3}\right)^{2}+\left(\frac{1 \times 10^{-5}}{4.4 \times 10^{-3}}\right)^{2} \\
& \text { Voltmeter Concentration } \\
(\text { minimum error })^{2} & =(0.0353)^{2}+(0.00227)^{2} \\
(\text { minimum error })^{2} & =\left(1.246 \times 10^{-3}\right)+\left(5.165 \times 10^{-6}\right)=1.251 \times 10^{-3} \\
\text { minimum error } & =\sqrt{1.251 \times 10^{-3}}=0.0354
\end{aligned}
$$

So the error is slightly over 3.5 per cent. The measurement of emf is the major error within this measurement.

The maximum gradient (line ----) has a gradient of $8.72 \times 10^{-2} \mathrm{~J} \mathrm{~mol}^{-1}$ The minimum gradient (line --) has a gradient of $7.48 \times 10^{-2} \mathrm{~J} \mathrm{~mol}^{-1}$ The maximum gradient is 17 per cent higher than the minimum gradient.
33.10 Rearranging the equation yields, $k=\frac{1}{t} \ln \left(\frac{c_{0}}{c_{t}}\right)$ and hence $k=-\frac{1}{t} \ln \left(\frac{c_{t}}{c_{0}}\right)$
so, $\quad \sigma_{k}=-\frac{1}{t}\left(\frac{\sigma_{c_{t}}}{c_{t}}\right)$
In our context here,

- The factor before the logarithm $=-1 / t=-1 / 10$ so a in eqn. (33.8) $=-1 / 10$.
- The $1 / c_{0}$ term, which is b in eqn. (33.8), disappears due to cancellation.
- The reactant concentration, c_{t}, is the observed variable x.
- In the question, the concentration c_{t} is expressed with the innate error of $\pm 0.005 \mathrm{~mol}$ dm^{-3} so we use this number as $\sigma_{c_{t}}$
If k had been a linear function of concentration as found for a zero-order reaction $\left(k=-c_{t} / t\right)$, then we would calculate k to be $0.06 / 10=0.006 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$ and σ_{k} would equal,

$$
\sigma_{k}=k\left(\frac{\sigma_{c_{t}}}{c_{t}}\right)=0.006 \times \frac{0.005}{0.06}=5 \times 10^{-4}=0.05 \%
$$

As it is a logarithmic function, we insert terms into eqn. (33.5),

$$
\begin{gathered}
\sigma_{k}=\left|-\frac{1}{10}\right| \times\left(\frac{0.005}{0.06}\right)=8.33 \dot{3} \times 10^{-3}=0.83 \% \\
a\left(\sigma_{c} \div c\right) \sigma_{k}
\end{gathered}
$$

This error is seventeen times larger than if the rate constant k had been a linear function of concentration c (cf. eqn. (33.5)).

