۲

Statistics II

Treatment and assessment of errors

Answers to additional problems

- **33.1** We first convert from V to mV. We then write, signal-to-noise ratio $=\frac{340}{10}=\frac{34}{1}$. which is acceptable. We might cite this ratio as 34 : 1.
- **33.2** The innate error will be half the minimum increment measurable on the watch dial. In this case, the innate error is 0.5 s since the minimum increment is 1 s.
- **33.3** From eqn. (33.2), the signal-to-noise ratio is $\frac{3.2}{0.7} = 4.6 : 1$ which is acceptable.
- **33.4** To linearize the data, we plot $1/[A]_t (as x)$ against time *t* (as *y*). The graph has the following appearance,

The graph clearly shows some scatter. The value of $r^2 = 0.969$.

33.5 From eqn. (33.3), the minimum error $=\left(\frac{0.001}{0.670}\right) = 1.49 \times 10^{-3}$, or 0.15%. **33.6** Inserting values into eqn. (33.4),

$$(\text{minimum error})^2 = \left(\frac{0.005}{10}\right)^2 + \left(\frac{0.001}{0.104}\right)^2 + \left(\frac{15}{600}\right)^2$$

Pipette Concentration Time

The reading for time is 600 s because the chemist removes a sample every 10 minutes so $10\times 60~\text{s}$

Performing the calculations yields,

 $(\text{minimum error})^2 = (5 \times 10^{-4})^2 + (9.62 \times 10^{-3})^2 + (0.025)^2$

 $(\text{minimum error})^2 = 2.5 \times 10^{-7} + 9.25 \times 10^{-5} + 6.25 \times 10^{-4}$

۲

()

۲

2

()

 $(\text{minimum error})^2 = 7.18 \times 10^{-4}$

so minimum error $=\sqrt{7.18 \times 10^{-4}} = 0.0268$

The error is 2.7%. Most of this error comes from the measurement of time.

33.7 It is best to start by computing the data necessary for the isochore plot.

()

<i>Т/</i> К	686	702	733	779	826
$1/T \div 10^{-3} \mathrm{K}^{-1}$	1.458	1.425	1.364	1.284	1.211
$K_{\rm max}$	1.77	1.67	1.55	1.41	1.22
ln K _{max}	0.571	0.513	0.438	0.344	0.199
K_{\min}	1.67	1.59	1.43	1.31	1.18
ln K _{min}	0.513	0.464	0.358	0.270	0.166

A graph is then drawn of $\ln K$ (as *y*), against 1/T (as *x*) for both sets of data.

The maximum gradient (line ——) is 1626 K^{-1} The minimum gradient (line ----) is 1259 K^{-1}

33.8 Inserting values into eqn. (33.4),

$$(\text{minimum error})^2 = \left(\frac{1}{28.3}\right)^2 + \left(\frac{1 \times 10^{-5}}{4.4 \times 10^{-3}}\right)^2$$

Voltmeter Concentration

 $(\text{minimum error})^2 = (0.035 \ 3)^2 + (0.002 \ 27)^2$

 $(\text{minimum error})^2 = (1.246 \times 10^{-3}) + (5.165 \times 10^{-6}) = 1.251 \times 10^{-3}$

minimum error $= \sqrt{1.251 \times 10^{-3}} = 0.0354$

So the error is slightly over 3.5 per cent. The measurement of *emf* is the major error within this measurement.

 (\mathbf{r})

۲

33: Statistics II

3

 (\mathbf{r})

 (\mathbf{O})

The maximum gradient (line – – – –) has a gradient of $8.72 \times 10^{-2} \text{J} \text{ mol}^{-1}$ The minimum gradient (line – – –) has a gradient of $7.48 \times 10^{-2} \text{J} \text{ mol}^{-1}$ The maximum gradient is 17 per cent higher than the minimum gradient.

33.10 Rearranging the equation yields,
$$k = \frac{1}{t} \ln \left(\frac{c_0}{c_t} \right)$$
 and hence $k = -\frac{1}{t} \ln \left(\frac{c_t}{c_0} \right)$

so,
$$\sigma_k = -\frac{1}{t} \left(\frac{\sigma_{c_t}}{c_t} \right)$$

In our context here,

- The factor before the logarithm = -1/t = -1/10 so *a* in eqn. (33.8) = -1/10.
- The $1/c_0$ term, which is *b* in eqn. (33.8), disappears due to cancellation.
- The reactant concentration, *c*, is the observed variable *x*.
- In the question, the concentration c_t is expressed with the innate error of \pm 0.005 mol dm⁻³ so we use this number as σ_{c_n}

If *k* had been a *linear* function of concentration as found for a zero-order reaction $(k = -c_t/t)$, then we would calculate *k* to be 0.06 / 10 = 0.006 mol dm⁻³ s⁻¹ and σ_k would equal,

$$\sigma_k = k \left(\frac{\sigma_{c_t}}{c_t} \right) = 0.006 \times \frac{0.005}{0.06} = 5 \times 10^{-4} = 0.05\%.$$

As it is a logarithmic function, we insert terms into eqn. (33.5),

$$\sigma_{k} = \left| -\frac{1}{10} \right| \times \left(\frac{0.005}{0.06} \right) = 8.333 \times 10^{-3} = 0.83\%.$$
$$a \left(\sigma_{c} \div c \right) \sigma_{k}$$

This error is seventeen times larger than if the rate constant k had been a linear function of concentration c (cf. eqn. (33.5)).

()

٠