Dimensional analysis

Answers to additional problems

36.1 The label should be completely dimensionless and without a factor. We treat the data as an equation. For example, we start with the equation Applied pressure $p=1 \times 10^{5} \mathrm{~Pa}$. We divide both sides by the unit Pa and multiply both sides by the inverse of $\times 10^{5}$ which is clearly 10^{-5}. This yields 10^{-5} Applied pressure $p / \mathrm{Pa}=1$. If this statement is correct for one datum, it will be correct for a column heading.
36.2 We start with pressure p because the variable is pressure. Because the unit of pressure in this example is the bar, we write, pressure, p /bar. This way, the label is completely dimensionless.
36.3 Inserting known units, $\left[\mathrm{J} \mathrm{mol}^{-1}\right]=\left[\mathrm{J} \mathrm{mol}^{-1}\right]-[\mathrm{K}]\left[\Delta S^{\ominus}\right]$.

To be dimensionally correct, each of these three terms must be dimensionally identical. Therefore, $[\mathrm{K}]\left[\Delta S^{\ominus}\right]$ is dimensionally equivalent to [$\left.\mathrm{J} \mathrm{mol}^{-1}\right], \mathrm{K} \times \Delta S^{\ominus}=\mathrm{J} \mathrm{mol}^{-1}$. Dividing both sides by K yields, $\Delta S^{\ominus}=\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$.
36.4 1. One atm $=\frac{101325}{10^{5}}$ bar $=1.0132$ bar (to 4 s.f.)
2. One bar $=\frac{10^{5}}{101325} \mathrm{~atm}=0.9869 \mathrm{~atm}$ (to 4 s.f.)
36.5 Current $I=\mathrm{d} Q / \mathrm{d} t$, where Q is charge in coulombs and t is time. Rearranging yields $\mathrm{d} Q=$ $I \times \mathrm{dt}$. Inserting units, $[\mathrm{C}]=[\mathrm{A}][\mathrm{s}]$ so a Coulomb has the compound unit, A s.
36.6 The chemist should start by defining molar mass, saying,

$$
\text { mass } \div \text { amount of material, } m \div n
$$

Inserting units, $M=\frac{[\mathrm{kg}]}{[\mathrm{mol}]}$ so molar mass has the units of $\mathrm{kg} \mathrm{mol}^{-1}$.
Chemists are permitted to deviate from the SI system of units and almost always cite a molar mass in $\mathrm{g} \mathrm{mol}^{-1}$.
36.7 The Nernst equation is, $E=E^{\ominus}+\quad \frac{R T}{n F} \ln \quad\left(\frac{[\mathrm{O}]}{[\mathrm{R}]}\right)$

Inserting units, $\quad[\mathrm{V}]=[\mathrm{V}]+\frac{\left[\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right] \times[\mathrm{K}]}{[1]\left[\mathrm{C} \mathrm{mol}^{-1}\right]} \times[1]$
Cancelling yields, $[\mathrm{V}]=\left[\mathrm{J} \mathrm{C}^{-1}\right]$. The definition of an Ampère A is a coulomb C per second (see the answer to Additional Problem 36.5). A coulomb has the units of $\mathrm{A} s$ and C^{-1} has the units $\mathrm{A}^{-1} \mathrm{~s}^{-1}$ or $(\mathrm{As})^{-1}$.
The compound unit of the joule is $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$ (see Table 36.2). Substituting yields, [V] = $\left[\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}\right]\left[\mathrm{A}^{-1} \mathrm{~s}^{-1}\right]$. The SI units of potential are therefore $\left[\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-1}\right]$.
36.8 Rearranging the equation, $k_{\mathrm{B}}=R \div N_{\mathrm{A}}$. Inserting units, $\left[k_{\mathrm{B}}\right]=\frac{\left[\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right]}{\left[\mathrm{mol}^{-1}\right]}$. Cancelling
yields k_{B} in $\left[\mathrm{J} \mathrm{K}^{-1}\right]$.
36.9 The Clapeyron equation is, $\frac{\mathrm{d} p}{\mathrm{~d} T}=\frac{\Delta H}{T \Delta V_{\mathrm{m}}}$. The subscripted m on ΔV means molar volume so m^{-1}. Rearranging to make $\mathrm{d} p$ the subject yields, $\mathrm{d} p=\frac{\mathrm{d} T \Delta H}{T \Delta V_{\mathrm{m}}}$.
Inserting unit terms, $[\mathrm{d} p]=\frac{[\mathrm{K}]\left[\mathrm{J} \mathrm{mol}^{-1}\right]}{[\mathrm{K}]\left[\mathrm{m}^{3} \mathrm{~mol}^{-1}\right]}$. Cancelling yields, $\left[\mathrm{J} \mathrm{m}^{-3}\right]$. From Table 36.2, the SI units of the joule are, $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$.
Substituting for J gives $[\mathrm{Pa}]=\left[\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}\right]\left[\mathrm{m}^{-3}\right]=\left[\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}\right]$ which is the same as that in Table 36.2.
36.10 Inserting units, $\left[C_{p}\right]=\frac{\left[\mathrm{J} \mathrm{mol}^{-1}\right]}{[\mathrm{K}]}=\left[\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right]$. The joule (in the SI system) is $\left[\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}\right]$. Therefore, $\left[C_{p}\right]=\left[\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right]$.

