

Dimensional analysis

Answers to additional problems

36.1 The label should be completely dimensionless and without a factor. We treat the data as an equation. For example, we start with the equation Applied pressure $p = 1 \times 10^5$ Pa. We divide both sides by the unit Pa and multiply both sides by the inverse of $\times 10^5$ which is clearly 10^{-5} . This yields 10^{-5} Applied pressure p / Pa = 1. If this statement is correct for one datum, it will be correct for a column heading.

۲

- **36.2** We start with pressure *p* because the variable is pressure. Because the unit of pressure in this example is the bar, we write, pressure, *p* /bar. This way, the label is completely dimensionless.
- **36.3** Inserting known units, $[J \text{ mol}^{-1}] = [J \text{ mol}^{-1}] [K][\Delta S^{\Theta}]$. To be dimensionally correct, each of these three terms must be dimensionally identical. Therefore, $[K][\Delta S^{\Theta}]$ is dimensionally equivalent to $[J \text{ mol}^{-1}]$, $K \times \Delta S^{\Theta} = J \text{ mol}^{-1}$. Dividing both sides by K yields, $\Delta S^{\Theta} = J \text{ K}^{-1} \text{ mol}^{-1}$.

36.4 1. One atm =
$$\frac{101325}{10^5}$$
 bar = 1.013 2 bar (to 4 s.f.)
2. One bar = $\frac{10^5}{101325}$ atm = 0.986 9 atm (to 4 s.f.)

36.5 Current I = dQ/dt, where Q is charge in coulombs and t is time. Rearranging yields $dQ = I \times dt$. Inserting units, [C] = [A] [s] so a Coulomb has the compound unit, A s.

36.6 The chemist should start by defining molar mass, saying,

mass \div amount of material, $m \div n$

Inserting units, $M = \frac{[kg]}{[mol]}$ so molar mass has the units of kg mol⁻¹. Chemists are permitted to deviate from the SI system of units and almost always cite a molar mass in g mol⁻¹.

36.7 The Nernst equation is, $E = E^{\ominus} + \frac{RT}{nF} \ln \left(\frac{[O]}{[R]} \right)$

Inserting units

inits,
$$[V] = [V] + \frac{[JK^{-1} \text{ mol}^{-1}] \times [K]}{[1][C \text{ mol}^{-1}]} \times [1]$$

Cancelling yields, $[V] = [J C^{-1}]$. The definition of an Ampère A is a coulomb C per second (see the answer to Additional Problem 36.5). A coulomb has the units of A s and C⁻¹ has the units A⁻¹ s⁻¹ or (A s)⁻¹.

The compound unit of the joule is kg m² s⁻² (see Table 36.2). Substituting yields, $[V] = [kg m^2 s^{-2}] [A^{-1} s^{-1}]$. The SI units of potential are therefore $[kg m^2 s^{-3} A^{-1}]$.

36.8 Rearranging the equation, $k_{\rm B} = R \div N_{\rm A}$. Inserting units, $[k_{\rm B}] = \frac{[J \, {\rm K}^{-1} \, {\rm mol}^{-1}]}{[{\rm mol}^{-1}]}$. Cancelling yields $k_{\rm B}$ in $[J \, {\rm K}^{-1}]$.

()

()

۲

2 36: Dimensional analysis

36.9 The Clapeyron equation is, $\frac{dp}{dT} = \frac{\Delta H}{T \Delta V_m}$. The subscripted m on ΔV means molar volume so m⁻¹. Rearranging to make dp the subject yields, $dp = \frac{dT \Delta H}{T \Delta V_m}$.

۲

Inserting unit terms, $[dp] = \frac{[K] [J \text{ mol}^{-1}]}{[K] [m^3 \text{ mol}^{-1}]}$. Cancelling yields, $[J \text{ m}^{-3}]$. From Table 36.2, the SI units of the joule are, kg m² s⁻².

Substituting for J gives $[Pa] = [kg m^2 s^{-2}] [m^{-3}] = [kg m^{-1} s^{-2}]$ which is the same as that in Table 36.2.

36.10 Inserting units, $[C_p] = \frac{[J \text{ mol}^{-1}]}{[K]} = [J \text{ K}^{-1} \text{ mol}^{-1}]$. The joule (in the SI system) is [kg m² s⁻²]. Therefore, $[C_p] = [kg \text{ m}^2 \text{ s}^{-2} \text{ K}^{-1} \text{ mol}^{-1}]$.

()

۲

۲