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1.1. Confirm that Eqns. 1.12 and 1.13 are together equivalent to Eqn. 1.10, and that substitution
of Eqn. 1.11 into Eqn. 1.10 is indeed consistent with Eqn. 1.5. Derive the condition that permits
replacement of γ′ with γ in Eqn. 1.13.

Let us begin with Eqns. 1.12 and 1.13 from Section 1.4

dW s = A
∑
i j

σi jdεi j

and

σi j = γ′δi j +
∂γ′

∂εi j

and substitute the latter into the former.

We then obtain

dW s = A
∑
i j

[
γ′δi j +

∂γ′

∂εi j

]
dεi j

= γ′A(dε11 + dε22) + A
∑
i j

∂γ′

∂εi j
dεi j

by noting that δi j (the Kronecker delta) can only, by definition, take the values one (i = j) or zero (i 6= j).

Next, we note that

A(dε11 + dε22) = dA

from the definition of surface strain, and that

∑
i j

∂γ′

∂εi j
dεi j = dγ′

from the standard mathematical properties of partial derivatives.

Substituting both of these into our last expression for the reversible work gives

dW s = γ′dA + Adγ′

which is Eqn. 1.10 as required.
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If we now insert Eqn. 1.11

γ′ = γ +
∑
i

µiΓi

into this last equation (Eqn. 1.10) we obtain

dW s = γdA + Adγ +
∑
i

µiΓidA + Ad

(∑
i

µiΓi

)

which we must demonstrate is consistent with Eqn. 1.5 from the text.

Turning to Eqn. 1.5 from Section 1.3, we have

F s = γA +
∑
i

µiN
s
i

and from this we can say that the reversible work (under the relevant conditions of constant temperature
and particle quantities) is given by

dW s = dF s = γdA + Adγ + d

(∑
i

µiN
s
i

)

where it should be recalled that Ns
i represents the quantity of particles (of each species) associated with

the surface, equivalent simply to ΓiA. Making this substitution, we find

dW s = γdA + Adγ + d

(
A
∑
i

µiΓi

)

= γdA + Adγ +
∑
i

µiΓidA + Ad

(∑
i

µiΓi

)

which is clearly the same result obtained above by substituting Eqn. 1.11 into Eqn. 1.10.

Finally, let us consider Eqn. 1.13 from Section 1.4

σi j = γ′δi j +
∂γ′

∂εi j

and evaluate explicitly the error, Ei j , that we would make in replacing γ′ throughout with γ.
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Clearly, that means

Ei j = γ′δi j − γδi j +
∂γ′

∂εi j
− ∂γ

∂εi j

= (γ′ − γ)δi j +
∂(γ′ − γ)

∂εi j

while from Eqn. 1.11 we have1

γ′ − γ =
∑
n

µnΓn

so that

Ei j =
∑
n

µnΓnδi j +
∂

∂εi j

(∑
n

µnΓn

)

=
∑
n

[
Γn

(
µnδi j +

∂µn
∂εi j

)
+ µn

∂Γn

∂εi j

]
is the expression that we must evaluate, in order to judge whether the γ′ → γ replacement is permissible
or not.

Now, looking at the final term, we may make progress by writing

∂Γn

∂εi j
=

(
∂Γn

∂A

)(
∂A

∂εi j

)
=

(
∂(Ns

n/A)

∂A

)(
∂A

∂εi j

)
= −

(
Ns
n

A2

)(
∂A

∂εi j

)
= −

(
Ns
n

A2

)
Aδi j

= −Γnδi j

where we made use, in the penultimate step, of the definition of strain.

1N.B. We change the dummy variable i , from Eqn. 1.11, into n at this point, to avoid confusion with the i and j indices
labelling tensor components of the surface stress and strain.
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Inserting this useful result into our last expression for the error, we note a convenient cancellation of terms,
and hence obtain

Ei j =
∑
n

Γn
∂µn
∂εi j

as our ultimate result.

Under what circumstances, then, might we expect Ei j to vanish, for all i and j?

Perhaps the first point to note is that the partial derivatives of individual chemical potentials with respect
to strain components will generally be non-zero, and fixed by the properties of the bulk. That is, the values
of these derivatives, be they positive or negative, will be independent of any choice we may make for the
position of the dividing plane.

Secondly, note that the values of the surface excesses will very much depend upon the position chosen
for the dividing plane. Indeed, for species that have non-zero concentration in the bulk, their values will
change linearly as one moves the dividing plane. It follows, therefore, that not only will the value of each
Ei j component generally be dependent upon the position of the dividing plane, this value too will vary in
a linear manner as the dividing plane is shifted.

So long as the gradient of Ei j (with respect to changes in location of the dividing plane) is non-zero, it
will therefore be possible always to find some location for the dividing plane at which Ei j vanishes for some
combination of i and j . There is no reason to suppose, however, either that this position for the dividing
plane will be physically reasonable (e.g. being anywhere near the last plane of atoms) or that the same
position will do the trick for all components of Ei j .

Consider, however, one important constraint upon the chemical potentials when the bulk stress vanishes.
This condition is equivalent to insisting that the bulk (in the absence of the surface) would exist at an
equilibrium defined by

∑
n

Xn
∂µn
∂εi j

= 0

where Xn represents the quantity of particles (of species n) in the bulk. If this expression holds and the Γn

values are in the same relative proportion as the corresponding Xn values, then clearly Ei j will vanish for
all i and j (and for all positions of the dividing plane). The additional requirement, on top of vanishing
bulk stress, is therefore that the stoichiometry of the surface region matches that of the bulk.
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1.2. Water rises up a capillary of diameter 0.32 mm, achieving a height of 9.2 cm above the
external level. Assuming a contact angle of zero with the capillary walls, calculate the surface
tension of water. Take 997.07 kg.m-3 for the density of water (at 25 �) and 9.81 m.s-2 for the
acceleration due to gravity.

Since we are told that the contact angle of water with the capillary walls is zero, we must be dealing with
a situation where the liquid surface within the capillary displays a concave curvature (as per Fig. 1.9a in
Section 1.5). Furthermore, the radius of curvature must equal the radius of the capillary in this case,
permitting us to use this value as r in

2γ

r
= ∆P

which is Eqn. 1.18 (the Young-Laplace equation).

For a cylindrical liquid column of density ρ, cross-sectional area A, and height h, the total weight that must
be supported by the curvature-induced pressure differential, ∆P, is ρAhg , with g the acceleration due to
gravity. Thus, we must have

A∆P = ρAhg

and hence

γ = ρrhg/2

after substitution of the Young-Laplace equation and some rearrangement.

Inserting r = 0.00016 m, h = 0.092 m, ρ = 997.07 kg.m−3, and g = 9.81 m.s−2, we obtain

γ = 7.199× 10−2 J.m−2

for the surface tension.
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1.3. In dry air (we state without proof) the instantaneous evaporation rate of a spherical water
droplet is proportional both to its radius and to its saturated vapour pressure. If a single such
droplet, of radius 0.01 µm, were to be mechanically dispersed into eight mutually identical smaller
droplets, by what factor would the instantaneous evaporation rate of the ensemble (at 25 �)
exceed that of the original droplet? Take the molar mass of water to be 18.015 g.mol-1, and any
other necessary parameters from Exercise 1.2.

Before beginning, let us first briefly discuss the question’s statement regarding the dependence of instan-
taneous evaporation rate on radius and saturated vapour pressure. Naively, one might have expected the
rate to be proportional to the droplet’s surface area, and hence to the square of the radius, but this fails
to account for the rate at which vapour can diffuse away from the droplet after evaporation. The earliest
treatment to account for this effect appears to be that of Langmuir [Phys. Rev. 12, 368 (1918)] who
argued, by analogy with heat loss through gaseous media, that proportionality to the non-squared radius
must be correct. A particularly clear modern treatment, including the influence of variation in the saturated
vapour pressure, may be found in a paper by Ho [Wat. Res. Res. 33, 2665 (1997)]. In this, it is shown
that the evaporation rate actually depends upon the difference between the saturated vapour pressure of
the droplet and the ambient pressure of water infinitely far from the droplet’s surface. The latter quantity
may, however, be taken as zero in the case of perfectly dry air.

Turning to the solution for our present problem, we note that the volume and/or mass of a spherical
droplet is proportional to the cube of its radius, so dispersing the original droplet into eight mutually iden-
tical droplets implies that each should have precisely half the radius of the original. If the radius were the
only important consideration, we would then anticipate the instantaneous evaporation rate of each small
droplet to be precisely half that of the original droplet (given the proportionality noted above) and the
total rate for the ensemble of eight such droplets to exceed that of the original by a factor of four.

Now, however, we must account for changes in the saturated vapour pressure, which we recall may be
obtained from Eqn. 1.27 in Section 1.5 (the Kelvin equation). That is, we have

ln [Pv (a)/Pv (∞)] =
2γV l

RTa

where Pv (a) is the saturated vapour pressure for a droplet of radius a, and Pv (∞) is the saturated vapour
pressure for a flat liquid surface.

Rearranging this equation, we find

Pv (a) = Pv (∞) exp

(
2γV l

RTa

)
and hence

Pv (a)/Pv (b) = exp

(
2γV l

RT

(
1

a
− 1

b

))
= exp

(
2γV l

RT

(
b − a

ab

))
where b simply represents some alternative droplet radius.
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Substituting b = 2a into this last result, we find

Pv (a)/Pv (2a) = exp

(
γV l

RTa

)
for the ratio of saturated vapour pressures associated with droplets having radii in the ratio 1:2.

Let us then take R = 8.314 J.K−1.mol−1 as the molar gas constant, and T = 298.15 K for 25�. The molar
volume of liquid water at this temperature can be worked out from its molar mass (18.015 g.mol−1) and
density (given in the previous problem as 997.07 kg.m−3) to be V l = 0.018015/997.07 = 1.807×10−5 m3.
In addition, we have γ = 7.199 × 10−2 J.m−2 from our solution to the previous problem, so putting
a = 0.005 µm, we calculate that

Pv (0.005× 10−6)/Pv (0.010× 10−6) = 1.11

which implies that the evaporation rate for the ensemble of eight droplets will exceed that of the original
droplet by a factor of 4× 1.11 = 4.44 overall.

Note that the size chosen for the original droplet in the problem (i.e. 0.01 µm) is fairly typical of fine particles
within atmospheric aerosols, so this result suggests that deviations in evaporation rate due to curvature-
induced variation in saturated vapour pressure ought to be accounted for in such cases. For coarse aerosol
particles, the effect is relatively negligible, while for ultrafine particles it may well be dominant.
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1.4. Adsorption of N2 on a porous graphite sample at 77 K yields the tabulated data (see margin)
as a function of gas-phase pressure. Suggest which type of isotherm best fits the data, and
hence estimate the sample’s surface area (assuming that a single molecule occupies an area of
16 Å2). If needed, take the saturated vapour pressure of N2 at this temperature to be 973.1 mbar.

An obvious first step in deciding which isotherm best fits the data provided is simply to plot the adsorbed
mass as a function of gas-phase pressure. Both the Langmuir isotherm and the Kisliuk isotherm ought to
show saturation in the adsorbed amount at some pressure, but the graph in Fig. 1 clearly shows that this
is not the case here. Indeed, it appears to be broadly consistent with the Brunauer-Emmett-Teller (BET)
isotherm, which accounts for the formation of multilayers as the pressure approaches the saturated vapour
pressure of the adsorbate species.
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Figure 1: Plot of adsorbed mass versus pressure.

In order to confirm true BET behaviour, however, it is sensible to make use of the rearranged form of the
isotherm, given as Eqn. 1.49 in Section 1.7. That is, we expect that the data should satisfy

P

N(P0 − P)
=

(c − 1)

cNs

(
P

P0

)
+

1

cNs

and hence should produce a straight line when P/N(P0 − P) is plotted against P/P0.

Here, N is the quantity of adsorbed molecules, and Ns the quantity of adsorption sites for these molecules. It
will be convenient, therefore, to convert the adsorbed masses provided in the table into adsorbed quantities
expressed in moles. This involves, of course, dividing by a factor of 28014 (to account for the mass of N2

expressed in mg.mol−1).
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Pressure, P (mbar) Adsorbed Mass (mg) Adsorbed Quantity, N (mol)
9.7 13.2 4.712×10−4

19.5 19.1 6.818×10−4

29.2 22.0 7.853×10−4

48.7 24.4 8.710×10−4

68.1 26.3 9.388×10−4

97.3 28.2 1.007×10−3

146.1 31.2 1.114×10−3

194.7 33.5 1.196×10−3

243.4 35.9 1.282×10−3

292.1 39.7 1.417×10−3

389.2 46.6 1.663×10−3

486.6 57.0 2.035×10−3

729.8 112.3 4.009×10−3

778.5 136.4 4.869×10−3

827.2 186.1 6.643×10−3

Plotting P/N(P0 − P) against P/P0 (using P0 = 973.1 mbar) we do indeed obtain a tolerably straight
line (see Fig. 2) with slope 1002.6 mol−1 and intercept 1.1309 mol−1. As per our straight line equation,
we expect the intercept to be given by 1/cNs and the slope to be given by (c − 1)/cNs . Combining these
expressions with the values obtained from the graph, we find c = 887.551 and Ns = 9.963× 10−4 mol =
6.000× 1020 adsorption sites.
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Figure 2: Plot of P/N(P0 − P) versus P/P0 to verify BET behaviour.

Since the size of each adsorption site is determined by its ability to accommodate a single N2 molecule in the
first layer, we can simply multiply the number of adsorption sites by the nominal footprint of each molecule
(i.e. 16 Å2) to obtain an estimate for the total surface area, giving (6.000×1020)×(16×10−20) = 96.0 m2.

Although this estimate might, at first, seem surprisingly large (about the size of the “six-yard box” of a
soccer pitch) for what is presumably a fairly small sample (small enough to fit within the experimental
chamber), porous graphite can often exhibit effective surface areas of several hundred square metres per
gram, so the value derived here is actually fairly modest.
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1.5. Use the Clausius-Clapeyron equation to prove that for Langmuirian adsorption the parame-
ter b must be proportional to exp (qa/RT ) with no other temperature dependence. Armed with
this knowledge, how might one extract a value for the constant of proportionality by comparing
isotherms collected at different temperatures?

We begin by recalling that the Clausius-Clapeyron equation (Eqn. 1.50 in Section 1.8)

ln (P2/P1) = −qa

R

(
1

T2
− 1

T1

)
links two temperature/pressure combinations, (T1, P1) and (T2, P2) that correspond to one specific relative
coverage, which we shall simply call θ. Let us, therefore, seek to find relationship between P1 and P2 from
the Langmuir isotherm, with a view to substituting the results into the above equation.

Starting with the Langmuir isotherm in the version for intact adsorption (Eqn. 1.39 in Section 1.7) we find

θ =
b1P1

1 + b1P1
=

b2P2

1 + b2P2

where we explicitly allow that the parameter b may depend upon temperature. That is, b1 and b2 apply
at temperatures T1 and T2 respectively.

From this, we may readily see that

b1P1 = b2P2

and indeed the Langmuir isotherm for dissociative adsorption (Eqn. 1.42 in Section 1.7)

θ =

√
b1P1

1 +
√

b1P1
=

√
b2P2

1 +
√

b2P2

clearly implies the same result. Note that when using the Langmuir isotherm, none of the analysis above
depends crucially upon the particular choice made for θ, and indeed this quantity will be absent from the
remainder of our discussion. All that matters is that we keep this quantity fixed.

The importance of our finding is that for Langmuirian adsorption we may simply replace P2/P1 in the
Clausius-Clapeyron equation with b1/b2, giving us

ln (b1/b2) = −qa

R

(
1

T2
− 1

T1

)
from which we obtain

b1

b2
= exp

[
qa

R

(
1

T1
− 1

T2

)]
=

exp (qa/RT1)

exp (qa/RT2)
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Now, it should be evident that we have always been free to write

b = f (T ) exp (qa/RT )

without any loss of generality, since the prefactor f (T ) could take literally any functional form, including
one that would cancel the exponential factor and replace it with some other temperature dependence
entirely. Our latest result, however, provides us with the strict constraint

f (T1) = f (T2)

for any arbitrarily chosen pair of temperatures, T1 and T2, and clearly this condition can only be satisfied
when f (T ) is, in fact, independent of temperature altogether. The only temperature dependence in the
value of b is, therefore, captured by the exponential factor, and the pre-factor may be treated as a constant
of proportionality, f , whose value we must now attempt to extract by comparing isotherms obtained at
different temperatures.

Having thus established that the pre-factor, f , must indeed be constant with respect to changes in tem-
perature, we may now note that

b = f exp (qa/RT )

implies that

ln b =
qa

RT
+ ln f

and hence that a plot of ln b versus 1/T (for Langmuir isotherms recorded at a range of temperatures)
ought to have gradient qa/R and intercept ln f , thus permitting the constant of proportionality to be
determined.


