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4.1. An initially clean surface is exposed to carbon monoxide at a partial pressure of 10-10 mbar
(10-8 Pa) and a temperature of 100 K. The initial sticking probability is measured to be 0.5, and
the surface density of adsorption sites is 1015 cm-2. Assuming that adsorption is non-dissociative
and Langmuirian, and that desorption is negligible, how long would it take to reach half of satu-
ration coverage? Compare with pressures of 10-7, 10-2, and 103 mbar.

We are told to assume non-dissociative Langmuirian adsorption, so from Eqn. 1.35 (in Section 1.7) we may
write

ra = kaP(1− θ)

for the adsorption rate, with ka being a rate constant, P the gas-phase pressure, and θ the relative coverage.

From Eqn. 4.2 (in Section 4.2) we also have

ra = Fs

with F being the molecular flux reaching the surface, and s the sticking probability.

Let us proceed by considering the clean surface, for which s = s0 (i.e. the initial sticking probability) and
θ = 0. Comparing our two expressions for ra under these circumstances, we conclude that

ka =
Fs0
P

which we may insert into our first expression to obtain

ra = Fs0(1− θ)

as a convenient equation for the non-dissociative Langmuirian adsorption rate when both the flux and the
initial sticking probability are known.

Since we define ra to be the number of adsorbates sticking per site per unit time, we must simply have

ra =
dθ

dt

and hence may write

dθ

(1− θ)
= Fs0dt
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Integrating this last expression, we find

− ln(1− θ) = Fs0t + C

with C being some constant. Setting θ = 0 at t = 0, however, we readily conclude that we must have
C = 0. Accordingly, we obtain

θ = 1− exp (−Fs0t)

which clearly approaches unity asymptotically as time increases without limit.

We have been asked to consider the time taken to reach half of saturation coverage, so let us call this time
τ and write

1

2
= 1− exp (−Fs0τ)

before rearranging to get

τ = − ln(1/2)

Fs0

as our general solution.

For our particular case, we need now to calculate the flux, F , given by Eqn. 4.3 (in Section 4.2) as

F =
PA0NA√
2πMRT

with A0 being the surface area per adsorption site, NA the Avogadro constant, M the molar mass of the
adsorbing species, R the molar gas constant, and T the gas-phase temperature. Being careful to express
each quantity in SI base units, we obtain

F =
10−8 × (1/1019)× (6.022× 1023)√
2π × (2.801× 10−2)× 8.314× 100

= 4.978× 10−5 s−1

where we have used 2.801× 10−2 kg for the molar mass of carbon monoxide (i.e. 28.01 g.mol−1).
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Inserting this value into our general expression for the time taken to reach half of the saturation coverage,
along with s0 = 0.5 as given in the question, we find

τ = − ln(1/2)

(4.978× 10−5)× 0.5
= 27848 s

which amounts to roughly seven and three-quarter hours.

Since the time in question is inversely proportional to the flux, which in turn is directly proportional to
the gas-phase pressure, we can work out the additional cases quite easily. At a pressure of 10−7 mbar (a
typical pressure used for deliberate dosing of samples) the time to reach half of saturation coverage will be
about 28 s. At a pressure of 10−2 mbar (rough vacuum) this will be reduced to 278 µs, and at a pressure
of 103 mbar (standard pressure) such a coverage would be reached in less than 3 ns.

Clearly, the concept of a truly clean surface only really applies under ultra-high vacuum conditions, and
becomes increasingly meaningless as one approaches ambient conditions.
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4.2. Differentiate Eqn. 4.6 with respect to temperature. Set the result to zero, and hence obtain
Eqn. 4.8 for the temperature at which the first-order desorption rate is maximised. Why is this
procedure much less useful in the zero-order and second-order cases?

Let us start with Eqn. 4.6 (Section 4.3) for first-order desorption

rd = νθ exp (−Ed/RT )

and differentiate with respect to temperature, obtaining

drd
dT

= ν

(
dθ

dT
+
θEd

RT 2

)
exp (−Ed/RT )

assuming that ν is independent of both temperature and coverage.

Now, let us consider that particular temperature, Tm, at which the derivative disappears (i.e. the rate
reaches a maximum). We then have

0 = ν

((
dθ

dT

)
T=Tm

+
θmEd

RT 2
m

)
exp (−Ed/RTm)

which simplifies to

Ed

RT 2
m

= − 1

θm

(
dθ

dT

)
T=Tm

quite straightforwardly, with θm being the instantaneous coverage at the moment when T = Tm.

Less straightforwardly, we may also recall that the surface temperature, T , is directly linked to the time,
t, by the heating rate, β (i.e. dT = βdt). Thus we may write

dθ

dT
=

1

β

dθ

dt

and so (recognising that rd = −dθ/dt) we have

Ed

RT 2
m

= − 1

βθm

(
dθ

dt

)
T=Tm

=
1

βθm
.νθm exp (−Ed/RTm)

=
ν

β
exp (−Ed/RTm)

which confirms Eqn. 4.8 (Section 4.3) as required.
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If we were to start instead with Eqn. 4.5 (Section 4.3) for zero-order desorption

rd = ν exp (−Ed/RT )

the result of differentiation with respect to temperature would be

drd
dT

= ν
Ed

RT 2
exp (−Ed/RT )

which would seem to imply an ever-increasing desorption rate as the temperature is increased. Clearly this
cannot be true indefinitely for a real system, but the peak in desorption rate (and subsequent collapse to
zero desorption) is dictated by complete exhaustion of the adsorbate supply, not by the desorption rate
equation. In other words, prediction of the temperature at which desorption is maximised lies outside the
model, and equating our last equation to zero will yield no helpful insight.

If, on the other hand, we were to start with Eqn. 4.7 (Section 4.3) for second-order desorption

rd = νθ2 exp (−Ed/RT )

the result of differentiation with respect to temperature would be

drd
dT

= ν

(
2θ

dθ

dT
+
θ2Ed

RT 2

)
exp (−Ed/RT )

= νθ

(
2
dθ

dT
+
θEd

RT 2

)
exp (−Ed/RT )

which looks a little more promising.

Indeed, equating this expression to zero at T = Tm leads us to

Ed

RT 2
m

= − 2

θm

(
dθ

dT

)
T=Tm

which differs from our equivalent deduction in the first-order case by an innocent factor of two.

Our problems begin, however, when we replace the temperature derivative with a time derivative, since we
now obtain

Ed

RT 2
m

= − 2

βθm

(
dθ

dt

)
T=Tm

=
1

βθm
.νθ2m exp (−Ed/RTm)

= θm
ν

β
exp (−Ed/RTm)

in which a factor of θm still remains. The practical upshot of this is that the equation does not, in fact,
uniquely link the values of ν and Ed unless we can somehow find out the coverage at the moment of
maximum desorption rate.
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We can make progress, however, by noting that second-order TPD curves are very nearly symmetric,
implying that θm ≈ θi/2, with θi being the initial coverage. Thus, we have

Ed

RT 2
m

=
νθi
2β

exp (−Ed/RTm)

and hence

ln (θiT
2
m) = ln

(
2βEd

νR

)
+

(
Ed

R

)
1

Tm

so that a plot of ln (θiT
2
m) against 1/Tm (for a series of experiments with different starting coverages, but

with a common heating rate) should yield a straight line of gradient Ed/R. A value for Ed could thus be ex-
tracted, and substitution of this back into the preceding equation would allow for ν also to be obtained. All
of this does, of course, pre-suppose that we are able to estimate different θi values with reasonable accuracy.

It is possible, therefore, to ascertain the key desorption parameters, Ed and ν, using only knowledge of the
peak position, Tm, even for the second-order case, so long as we can measure initial coverage. But, unlike
the first-order example, it will be necessary to conduct multiple experiments, with different known initial
coverages, in order to do so.

One could, alternatively, simply treat the product νθi as an unknown variable whose value may be guessed
(just as the value of ν must be guessed in the first-order case). Analysis could then be carried through based
upon a single experiment, but whilst we can probably guess the initial coverage to within a factor of ten, it
is rather harder to imagine what a reasonable attempt frequency should be for recombinative desorption.
Estimates of Ed obtained in this way would, therefore, be subject to somewhat more uncertainty than those
for a first-order process.
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4.3. Given the following data for first-order desorption at different heating rates, use the Redhead
formula (Eqn. 4.9) to estimate the activation barrier for desorption (assuming some reasonable
pre-exponential factor) for each heating rate separately. Then, use Eqn. 4.10 to obtain both the
activation barrier and the pre-exponential factor, by plotting the data for different heating rates
on a suitable graph. Comment on the discrepancy between the two methods.

To apply the Redhead formula (Eqn. 4.9 from Section 4.3)

Ed = RTm

[
ln

(
νTm

β

)
− 3.64

]
it will be necessary for us to assume some appropriate value for the pre-exponential factor, ν. As mentioned
in the text, a value of ν = 1013 s−1 is often thought reasonable, so that is what we shall use here. Evaluating
for each entry in the table of data, we get

β (K.s−1) 0.5 1.0 2.0 5.0 10.0 15.0 25.0
Tm (K) 450 455 463 475 485 490 495
Ed (kJ.mol−1) 123.8 122.6 122.2 121.8 121.7 121.3 120.5

in which there is clearly a trend toward lower estimated adsorption heat at higher heating rates (as opposed
to random noise in the estimated values). This is an indicator that the assumed pre-exponential factor is
probably somewhat too low, whereas an increasing trend might suggest that the value used was too low.

One could, of course, proceed to use trial an error, in search of a guess for the pre-exponential factor
that yields no strong trend either way, but a more systematic approach will be to make use of Eqn. 4.10
(Section 4.3) which takes the form

ln

(
RT 2

m

β

)
=

(
Ed

R

)
1

Tm
+ ln

(
Ed

ν

)
and permits a solution by graphical means.

Plotting ln (RT 2
m/β) against 1/Tm (see Fig. 1) we observe roughly linear correlation, indicating that

Eqn. 4.10 holds reasonably well, aside from some experimental noise. Fitting a straight line to the data, we
obtain a gradient of 17290 K and an intercept of −23.55. Clearly the slope should take the value Ed/R,
implying that we must have

Ed = 17290× 8.314 = 143.8 kJ.mol−1

which is quite close to, but a little higher than, the values obtained from the Redhead formula.
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Figure 1: Plot of ln (RT 2
m/β) against 1/Tm to ascertain Ed and ν.

Likewise, the intercept should take the value ln(Ed/ν), so that we have

ν =
Ed

exp (−23.55)
=

143750

exp (−23.55)
= 2.43× 1015 s−1

which clearly differs somewhat from the assumption of 1013 s−1 that we used in the Redhead formula above.

Indeed, had we used an estimate for ν of 2.5× 1015 s−1 in the Redhead formula, instead of 1013 s−1, we
would have obtained the following results for each individual data point

β (K.s−1) 0.5 1.0 2.0 5.0 10.0 15.0 25.0
Tm (K) 450 455 463 475 485 490 495
Ed (kJ.mol−1) 144.5 143.5 143.4 143.6 143.9 143.8 143.2

in which there is no clear trend, only a little noise, and the mean value of 143.7 kJ.mol−1 lies very close
to the value of 143.8 kJ.mol−1 derived from Eqn. 4.10. It is notable, however, that even using a value
for ν that differed from our best estimate by a factor of almost 250, the adsorption heats obtained via
the Redhead formula for individual data points lie only 14-16% below the value inferred from the whole
dataset. Clearly the Redhead formula allows us to make a reasonable estimate of adsorption heat from a
single experiment at some convenient heating rate, but a better estimate can generally be achieved if time
permits to conduct several experiments at different heating rates.
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4.4. The surface-catalysed reaction A+B → C proceeds via a Langmuir-Hinshelwood mechanism.
Assuming that the surface coverages of all species follow the form given in Eqn. 1.43 (with non-
dissociative adsorption throughout) write a general expression for the rate of forward reaction in
terms of their gas-phase pressures, PA, PB , and PC . Comment upon the kinetics in circumstances
where (i) one of the reactants adsorbs much more strongly than either the product or the other
reactant; and (ii) the product adsorbs much more strongly than either reactant.

We are told to make use of Eqn. 1.43 (from Section 1.7) which is

θi =
(biPi )

ni

1 +
∑

j(bjPj)nj

where the bi and Pi represent the Langmuir coefficients and gas-phase partial pressures for species labelled
i . The exponents ni simply take the value of unity for non-dissociative adsorption.

Using this, we can write the following expressions for the relative coverages of species A, B, and C

θA =
bAPA

1 + bAPA + bBPB + bCPC

θB =
bBPB

1 + bAPA + bBPB + bCPC

θC =
bCPC

1 + bAPA + bBPB + bCPC

where it is clear that the numerators differ but the denominators do not.

For a Langmuir-Hinshelwood mechanism, the forward reaction rate ought to be proportional to the cover-
ages of species A and B, and thus takes the general form

r = k
bAPAbBPB

(1 + bAPA + bBPB + bCPC )2

in which we introduce a rate constant, k.

Addressing the particular special cases raised in the question, the first specifies that one of the reactants
(let us say species A) adsorbs much more strongly than either the product or the other reactant. We are
therefore justified in expecting bAPA � bBPB and bAPA � bCPC , so that we obtain

r ≈ k
bAPAbBPB

(1 + bAPA)2

in which the pressure of the product does not feature.
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For a sufficiently low pressure of species A (bAPA � 1) we may therefore expect a reaction that is first-order
in both reactant pressures, with

r ≈ kbAPAbBPB

in this case.

Once the product bAPA significantly exceeds unity, however, we find

r ≈ k
bBPB

bAPA

which implies a reaction rate that is inversely related to the pressure of species A (but still proportional to
the pressure of species B). In effect, the strongly adsorbing reactant species (A) will tend to block sites
that might otherwise accommodate the other reactant species (B). Since the reaction relies on both species
being present on the surface, this results in a form of self-poisoning.

The second special case asks us to consider a situation where the product (C) binds much more strongly
than either reactant, so that we should expect bCPC � bAPA and bCPC � bBPB . Our general expression
then becomes

r ≈ k
bAPAbBPB

(1 + bCPC )2

from which we deduce that the reaction would be strongly suppressed by any appreciable pressure of the
product species (kinetic order approaching −2 as the relevant partial pressure increases).
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4.5. How would your answers to the last question differ if the reaction proceeded via an Eley-
Rideal mechanism?

If the reaction occurs via an Eley-Rideal mechanism, we can assume that one of our reactant species (let us
say species B) no longer adsorbs appreciably on the surface at all. We may therefore modify our remaining
coverage expressions (from the previous question) to the forms

θA =
bAPA

1 + bAPA + bCPC

θC =
bCPC

1 + bAPA + bCPC

and the general expression for the forward reaction rate is just

r = k
bAPAPB

1 + bAPA + bCPC

where the proportionality to PB arises due to the flux of species B from the gas phase, and not from the
coverage of species B on the surface.

Considering the special case where adsorption of species A dominates over that of species C (as well as
that of species B) we set bAPA � bCPC and obtain

r ≈ k
bAPAPB

1 + bAPA

in which the pressure of species C no longer features. In fact, for a sufficiently high partial pressure of
species A, we will eventually find

r ≈ kPB

so that the rate depends only upon the gas-phase pressure of the non-adsorbing species.

Finally, if the product binds much more strongly than reactant A, we may set bCPC � bAPA, and the
Eley-Rideal forward reaction rate becomes

r ≈ k
bAPAPB

1 + bCPC

which is proportional to both of the reactant pressures. The rate will then be suppressed by increasing
partial pressure of the product species, approaching a kinetic order of −1 in the limit that this becomes high.

Crucially, the kinetic behaviour in different regimes will differ between the Langmuir-Hinshelwood and Eley-
Rideal mechanisms, so that the two modes can potentially be determined through systematic experimental
studies.


